A Characterization of Edge-Bicolored Graphs with Generalized Perfect Elimination Orderings

نویسنده

  • Koji Nuida
چکیده

An important property of chordal graphs is that these graphs are characterized by existence of perfect elimination orderings on their vertex sets. In this paper, we generalize the notion of perfect elimination orderings to graphs with edge-colorings by two colors, and give an excluded-subgraph characterization for graphs with such orderings. As an application, we announce some forthcoming results on hyperplane arrangements which can be derived from our result in this paper.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A characterization of signed graphs with generalized perfect elimination orderings

An important property of chordal graphs is that these graphs are characterized by existence of perfect elimination orderings on their vertex sets. In this paper, we generalize the notion of perfect elimination orderings to signed graphs, and give a characterization for graphs admitting such orderings, together with characterizations restricted to some subclasses and further properties of those ...

متن کامل

Perfect elimination orderings for symmetric matrices

We introduce a new class of structured symmetric matrices by extending the notion of perfect elimination ordering from graphs to weighted graphs or matrices. This offers a common framework capturing common vertex elimination orderings of monotone families of chordal graphs, Robinsonian matrices and ultrametrics. We give a structural characterization for matrices that admit perfect elimination o...

متن کامل

Perfect Matchings in Edge-Transitive Graphs

We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...

متن کامل

Generating and characterizing the perfect elimination orderings of a chordal graph

We develop a constant time transposition “oracle” for the set of perfect elimination orderings of chordal graphs. Using this oracle, we can generate a Gray code of all perfect elimination orderings in constant amortized time using known results about antimatroids. Using clique trees, we show how the initialization of the algorithm can be performed in linear time. We also develop two new charact...

متن کامل

Graceful labelings of the generalized Petersen graphs

A graceful labeling of a graph $G=(V,E)$ with $m$ edges is aninjection $f: V(G) rightarrow {0,1,ldots,m}$ such that the resulting edge labelsobtained by $|f(u)-f(v)|$ on every edge $uv$ are pairwise distinct. For natural numbers $n$ and $k$, where $n > 2k$, a generalized Petersengraph $P(n, k)$ is the graph whose vertex set is ${u_1, u_2, cdots, u_n} cup {v_1, v_2, cdots, v_n}$ and its edge set...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007